If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-52x+36=0
a = 1; b = -52; c = +36;
Δ = b2-4ac
Δ = -522-4·1·36
Δ = 2560
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2560}=\sqrt{256*10}=\sqrt{256}*\sqrt{10}=16\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-16\sqrt{10}}{2*1}=\frac{52-16\sqrt{10}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+16\sqrt{10}}{2*1}=\frac{52+16\sqrt{10}}{2} $
| 16x2+10=131 | | 7=p/2+4 | | -25=x2 | | 15+45=3(3x-4) | | 6z+1/6=7z-4/7 | | 7=+p2+4 | | 5(x+9=-45 | | 4x+8=6x+30 | | x3+7x-4=0 | | y/3+17=20 | | 9.5-5.5x=7.5(3x+3.5) | | 5x-15=4x-2 | | 14+t=-5t+2 | | 3/x+3=12 | | t/4+3=12 | | 5x-(2x-5)=-11 | | x+.15x=12 | | 16 = r4+ 13 | | X-(4x+1)=7x+7 | | 4x-4=6x+16 | | 8x=9+6x-5 | | 4z-3=15 | | x+.15x=9.6 | | X^3+12x^2-x-252=0 | | -10v−8=-8−10v | | 3x=34=12x-74 | | 4/13x=16. | | 9=u/2+8 | | x3+12x2-x-252=0 | | 5y+17=3 | | x2-2x-4=2x+8 | | c/2+-4=-6 |